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DEFINITIONS AND STANDARD CONDITIONS

Symbols used in this report are tabulated below. Values marked with an asterisk
(*) refer to the values of parameters under standard conditions. These quantities are
altered in one of the graphs. Values marked with a plus sign (+) refer to the values of

parameters altered for the purpose of comparison with experiment.

A transverse cross-sectional area of graphite lattice available for heat
flow = 378. cm?
C, specific heat of air in channel = 0.24 cal/g-0Cx*
C, power transfer coefficient by conduction from metal to carbon =
0.0095 cal/cm-sec-0C*
C, power transfer coefficient by radiation from metal to carbon =
1.1 x 10-11 cal/cm-sec-0A%x
D 4 x hydraulic radius of air channels = 2.27 cm
e distance of flux maximum from gap face of pile = -3,5 cm**
f distance of plenum end of fuel rod from flux maximum = 339 cm*+
h heat transfer coefficient from metal or carbon to air in channel =
0.0038 cal/cm2-sec-0C**
h' heat transfer coefficient from carbon to air in gap = 0.00093
cal/cm2-sec-0C* '
K cross-sectional area available for air flow in channel = 27.9 cm?2
k thermal conductivity of graphite! = 0.17 cal/cm-sec-0oC*+
k, thermal conductivity of air = 7.6 x 10-5 cal/cm-sec-9C
L axial distance from flux maximum to point where flux extrapolates to
zero = 381 cm**t
L;j distance from center of pile to edge of orificing
L;' distance from center of pile to edge of loaded lattices, ith direction
N number of channels loaded = 1369%
P power produced by reactor = 28 megawatts?
P. perimeter of the carbon = 21.3 c¢cm
P, perimeter of the metallic fuel elements including the fins = 27.8 cm
Q power generated in central half-channel = 6040 cal/sec+
Q' power generated per unit length in central half-channel
R,S coefficients of the two particular integrals of a certain linear, inhomo-
genous, first-order differential equation '
s transverse extrapolation distance (= 61 cm for comparison with experi-
ment only)
T, temperature of air in channels
T. temperature of the carbon
Tyn temperature of the metallic fuel element
U See equation (24) for its definition
V See equation (22) for its definition
W mass rate of air flow thru central channel = 138 g/sec*+
x horizontal positional coordinate in a direction transverse to that of the
fuel elements
y vertical positional coordihate in a direction transverse to that of the
fuel elements
1R.C. Garth and V.C, Sailor, “Thermal Conductivity of Graphite, " BNL-69, November 28, 1949,




axial positional coordinate in direction parallel to that of the fuel element
fraction of all heat generated in the carbon = 0,05%*

viscosity of air = 225 micropoises

two roots of a quadratic equation. These roots are the coefficients of =z
in the exponentials corresponding to the solutions of a certain linear,
homogenous, first-order differential equation

n/2L = 4,12 x 10-3/cm
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PREFACE

The axial temperature distribution is calculated in a pile with a central air gap.
The effect of various geometrical and thermal constants on this distribution is pre-
sented in Figures 4 through 10, and a tabular summary is presented in Figure 11,
The coefficient of heat transfer tothe air and the specific heat of the air are the most
important parameters. The fraction of heat generated in, and the heat conducted or
radiated to, the graphite and the consideration of the actual flux distribution are of
secondary importance. The thermal conductivity of graphite and the heat transferred
to the gap are of negligible importance.

A simple theory is compired with a more elaborate theory in Figure 3. The air
temperature in all cases can be computed just as well from the simple theory as from
the more elaborate one. The temperatures of the fuel elements, the air and the
graphite at the plenum end are all very nearly equal, and the elaborate and simple
theories lead to essentially the same result for this temperature. For the Brookhaven
reactor at 28-Mw power, the elaborate theory predicts the fuel element temperature
at the gap to be some 20°C lower and the graphite temperature to be some 40°C higher
than does the simple theory. These differences gradually vanish as one moves along
toward the plenum chamber,

Finally, in Figure 12, an attempt is made to compare theory and experiment. The
agreement is poor because of experimental difficulties and a theoretical difficulty as
explained in the final section, Numerical Results and Conclusions.




AXIAL HEAT DISTRIBUTION IN BROOKHAVEN REACTOR

EFFECT OF VARIOUS GEOMETRICAL AND THERMAL CONSTANTS AND
COMPARISON WITH EXPERIMENT

Introduction and Approximations

The primary purpose of this report is to calculate the temperature distribution
along the air cooling channels in the Brookhaven reactor. Not only is the temperature
distribution needed in order to design a reactor, but it is requisite for the evaluation
of the temperature coefficient, xenon poisoning, stability under flashes, etc.

The secondary purpose of this study is to determine the influence on this dis-
tribution of various geometrical and thermal constants so that simplifications can be
made in future calculations by neglecting unimportant considerations.

A third purpose is to compare a simple theory and a more elaborate theory.
Fourthly, the elaborate theory is to be compared with experiment. Unfortunately, a
valid comparison is almost impossible because of experimental reasons and because
the theory in at least one respect is inadequate. The reasons are pre sented in the
section, Numerical Results and Conclusions.

The Brookhaven reactor consists of a graphite cube split down a central plane.
Air flows into this split or gap and out of the air channels, as shown in Figure 1. The
air channels of the Brookhaven reactor have their flow restricted or orificed in such a
a way that the mass rate of flow through any channel is proportional to the heat energy
produced in that channel. This fact introduces the simplification that the reactor is,2
on the average, approximately isothermal in any plane parallel to the gap. We may,
therefore, restrict ourselves to a consideration of the central channel and its associa-
ted lattice. Were it not for the orificing, this channel would be the hottest. We see,
also, that heat flow in directions parallel to the gap may be neglected in a first ap-
proximation. We consider, therefore, only the flow of heat axially along the channels
and the interchange of heat into and out of the ends of the graphite lattice. '

The problem of the temperature distribution within the fuel element itself has
been considered elsewhere and will not be treated here.3 The temperature of the fuel
element will be characterized by its surface temperature at any axial point.

The radiation of heat from the fuel elements is proportional to the fourth power
of the temperature. Because this nonlinear dependence introduces considerable
mathematical complications, we linearize this dependence by considering just the
first two terms in a Taylor series expansion. It is to be noted that only about 20% of
all the heat is transferred by radiation (to the graphite), most of the remainder being

2It is to be noted that the heat transfer coefficient is proportional to the mass rate
of air flow to the 0.8 power, Hence, the periphery is slightly cooler.

3M. Clark, Jr., “Temperature of and Stresses in Cylindrical Fuel Elements During Pile
Flashes, ' BNL-86.




transferred directly to the air. The linearization approximation will not introduce a
serious error,

Heat may be transferred to the graphite from the fuel elements by radiation and
by conduction, and from the air by conduction. Further, heat may be generated in the
graphite by the slowing down of neutrons and by the absorption of gamma rays.

The air in the channels is so highly turbulent that it may be considered thoroughly
mixed across any cross section transverse to the channel. The air may at any axial
point be characterized by a single temperature.

We shall assume the power generated varies cosinusoidally from the center of

the gap.4

Simple Method of Calculation

Before formulating the more accurate method of calculation, let us consider a
simple first approximation. We neglect all forms of heat transfer except the conduc-
tion from the fuel elements to the air stream and from the carbon to the air stream.
Three statements serve to formulate the equations: ’

1. The power generated by the metal is equal to that carried away by the air:

7Q
2L

(1-a)

Tz
cosz—L = hPm (T,=T,). (1)

where

fraction of all energy of fission released in carbon

power generated in central half-channel at flux maximum
half-length of extrapolated pile along fuel element direction
distance of point of interest along a fuel element measured from
the center of the reactor

power transfer coefficient to the air stream from either metal or
carbon

perimeter of metal fuel element including fins

temperature of the metal

temperature of the air

= N O e
I I i

= '
8 3
non

=
n

2. The power generated in the carbon is equal to the power carried away by
air:

™ Tz h
a —— cos — = hP T.~T,),» . 2
21 2L c (TemTy) ( )

where

4]. Chernick, I. Kaplan, J. Kunstadter, V. Sailor and C. Williams, ‘*An Experimental
and Theoretical Study of the Subcritical BNL Reactor, ' BNL-60.
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P_. = perimeter of carbon

T. = temperature of carbon

3. The power absorbed by the air equals the power absorbed from the car-
bon and from the metal: '
dT

a
CaW —— = hP. (TmTy) + WPy (T,-T,), (3)

where

specific heat of the air
mass flow rate of air in the central channel

Ca
w

The above equations are readily solved by finding one temperature in terms of
the others and subsequently eliminating that temperature in the remaining equations.
The results are:

Q 7z (4)
Ta = sin

CaW 2L

(1~a)mmQ Tz (5)
Tm = § — + Ta

2hPmL 2L

amrQ 7z (6)
c = cosg = + T

2hP L 2L a

The zero of the temperature scale is taken to be the inlet temperature of the air.

The mass flow rate of air in the central channel is easy to determine. Because
of the orificing, the air flow in a channel varies ascos (mx;/2L7) cos (ny;/2L;), where
the channel is located at (xj, yj). Hence, the total flow of air is:

'ltxi myy
2W 2 cos ( ) cos ( >. (7)
i 2L, 2L,

]

The summation may be replaced by an integration; the total air flow is:

L, L,
2WN bipd my
dx dy cos cos (8)
4L,L, ) 2L, 2L, '
-L, -L,
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where N = number of channels loaded into a rectangular array, 2L; by 2L, in
size. Since the total mass flow rate of air is known, it is simple to determine W
from equation (9).

The power transfer coefficient is determined® from the relation:

0.8 0.4
hD DW C_u
— = 0.023 <—> ( 2 > . (10)
ka ’ HK ka
where
k, = thermal conductivity of air
D = 4 x hydraulic radius
i = viscosity of air
K = cross-sectional area available for air flow
C, = specific heat of air at constant pressure

Finally, Q is determined from the total power P:

L
0 Tz X, my .
P=22 fdz-—-cos—-—-cos—1 cos 1
i,j 2L 2L 2L, 2L,
8ON i .
- 11
- (11)

(cf. equation (9)).

Elaborate Method of Calculating Temperature Distribution

We turn now to a more elaborate method of calculation. Three statements of
energy conservation suffice to establish the equations of heat flow:

1. The power made in the fuel element equals the power carried away by
conduction to the carbon plus that carried away by radiation to the carbon plus that
carried away by convection to the air:

, Tz ¢
(1-a) Q cos === Cy (Ty=Tc) + Cp (Tp=To) + hPy (T,-T,), (12)
where
Q' = power generated at flux maximum per unit length of fuel element

= /2L

axial distance to point of interest from maximum of neutron flux

Z

SW.H. McAdams, Heat Transmission., 2nd ed., McGraw-Hill Book Co., Inc., 1942, p. 168,
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C1 = power conduction coefficient from metal to carbon
CZ = power radiation coefficient from metal to carbon

2. The power produced in an axial section of the carbon equals the change
in power transported parallel to a channel plus the power conducted to the metal plus
the power lost by radiation to the metal plus the power carried away by the air:

2

Tz a°T,

[ — MR
aQ’ cos =- kA—-';z— - Cy (T, -T.) = C, (T ~T.) + hP_. (T.-T,), (13)
where
k = conductivity of carbon v
A = transverse cross-sectional area of carbon in one lattice j

*3, The increase in temperature of the air multiplied by the heat capacity
and the mass rate of air flow equals the power given to the air from the metal plus
the power given to it from the carbon:

dT
C,W d: = hP_ (T,~T,) + hP_ (T,~T,) . (14)

The boundary conditions are:

1. The'power flowing axially from the graphite to the air in the gap is pro-
portional to the temperature difference between the carbon and the air at that point.

At z = -|e|

dT
k —dzﬁ = h' (Te~T,) » (15)

where

|e| = the distance from the maximum of the neutron flux to the gap face

(see Figure 2);
h'= the heat transfer coefficient to the air in the gap from the graphite

2. The power flowing axially from the graphite to the air in the plenum
chamber is proportional to the temperature difference between the carbon and the
air at that point. However, the temperature difference is small and the power transfer .
coefficient is small, because of the low transverse air velocity. Hence, we may neg-
lect the powér transfer to the plenum from the face of the graphite. A further ap-
proximation is in order. The fuel rods end at a point short of the pile face, and the ;
flux extrapolates to zero at a distance intermediate between the ends of the rods and
the plenum chamber face of the pile. Since much of the heat produced in the carbon
is produced by heat radiation from the fuel elements, by slowing down neutrons, and
by stopping gamma rays, we take the point where the flux extrapolates to zero as the
point to apply the zero power transfer condition. At =z =1, ’
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k e - 0. (16)

Any other treatment would require a complicated analysis in several dimensions and
would make essentially no difference.

The linearized equations become:

, Tz -3
(1-a) Q' cos (32 > = Cy (T, ~T.) + 4C, T; (T,~To) + hP (T -T,) (17)
- a’r, _
B 3
aQ’ cos <—2-I> = =kA T - C) (Ty=To) — 4C, Ty (T =T.) + bP, (T -T,) (18)
dz
dT, .
Ca¥ == = WP (T,=T,) + hP (To=T,) (19)

These equations are solved by the tedious process of systematically solving for
one temperature in terms of the others and of eliminating that temperature from all
other equations. We may arrive at an inhomogeneous, third order, linear differential
equation for the air temperature., This equation is solved by the usual methods. The
complete solution consists of a solution of the homogeneous equation which involves
a positive and negative exponential, plus a solution of the inhomogeneous equation
consisting of a linear combination of sin wz and cos wz (w = m/2L). The two roots of
the homogeneous equation are:

kA + \/(kA)z + 4C_WV
Ty, 2 = (20)

where

g
) KAC,W (C +4C, T +hP )
V= = — . (22)
hP_ (C,+4C, T,) + hP_ (C,+4C,T +hP_)

The two roots ™ and w_, provide the coefficient of z in the two exponentials,

2

The coefficients of the two terms in sin wz and cos wz, corresponding to the
inhomogenous solution are determined by substitiution of the solution into the differ-
ential equation. The coefficient S of the cosine term is:

, .
. - U (VolsC W) (23)
(volsc W)? + (kA)? o

where
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kAw?hP_ (1-a)
U=0 |1 % = = ) (24)
BB (C,+4C,T)) + hP_ (C,+4C,To+hP )

The coefficient, R, of the sine term is:

R = ~kAwU ) (25)

(votic )2 + (kAw)?

The two boundary conditions (15) and (16) serve to determine the coefficients
a/Tr1 and b/m, of the two exponential terms, each of which is a solution of the homo-
geneous differential equation for the air temperature. The following two equations
may be solved simultaneously for a and b:

_ -7, lel -1, }el
[  lel o, el } c W [hPm+C,+4C2T;] Bﬂlk—h')e "Tat (mkmhn'y e 2D
k | e a+ e b} + =

=
h [hPmPc ¥ (C +4C,TY) (pc+pm§]

3
c,W [hPm + C, + 4C2Tm] [(h’s—ka) cos wle] +

k [R sin w'e‘ ~ 8 cos wlel] + =
v h [hPmPC + (C(+4C,T)) (PC+Pm)]

-(h'R+kwS) sin w1e|]-+ [1-a] hP Q' [—h' cos wle| + wk sin wleﬂ

(26)
— 77,L T,L
7L m,L c W [hPm +c, + 4C2Tm]I:W|e a + T,e b
e a + e b {+ =
h [hP P + (C,+4C,T)) (P+P) |
wC W [hPm +C, o+ 4czpi][R cos @L - S sin wL]-+
= -~ [S cos wL + R sin wL] - —
3
h [hPmPC +(C,+4C,T2) (Pc+Pm)]
+ [1-a} hP Q'w sin oL
(27)

Q' is determined from the total power:

f
Tz 7x. Ty .
P = 20’ dz cos — 2 cos L cos —* (28)
2L i,j L +s L +s !
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where
f = distance from flux maximum to end of fuel element
L' = distance from center of pile to edge of loaded lattices
s = transverse extrapolation distance.
It is found that
7P
o - . @9)

2
16 LN [1+s/L']? [sin /2 (1+s/L')] [sin (7f/2L) + sin (7|e|/2L)]

The power transfer coefficients, one for the air in the gap, one for the air in the
channels, are found_from equation (10). The constants C; and C, are found from
experiments, and T2 may be determined from the simple calculation discussed
earlier., The mass rate of air flow is found from equation (9).

The solutions are as follows:

a T2z b T,z S R
T, = — (e ' =1) +— (e 2 -1) + —sin wz +— (l-cos wz) (30)
iz w w

1 2

-3 7T|z a2z
C W hPm+C|+4C2Tm e a t e b+ S cos wz + R sin wz |+

e = la fy)
1x[hPmPc + (C,+4C,T) (Pc+Pmﬂ

-~ Q'hP, (1-a) cos @z

. (31)
: 3 Tyz a2 .
C,v C,+4C2Tm e a + e b + S cos wz + R sin wz |+
Tm = Ta ) =
h| h?P P + (C,+4C,T,) (P +P)
+ Q'bP, (1-a) cos wz
(32)

Numerical Results and Conclusions

The purpose of this report is to study the effects of various parameters on the
heat distribution in the Brookhaven reactor. The results of this study are summarized
in tabular form in Figure 11, and in graphical form in Figures 3-10, and 12.
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Each of the graphical Figures 3-10 consists of six graphs. Three of these graphs
(solid lines) relate to the quantity being studied and the remaining three (dashed lines)
are presented for comparison. These latter three refer to standard values of the
parameters and are based on the simple method of calculation. In each set of three
graphs, one describes the fuel element temperature, a second illustrates the graphite
moderator temperature, and the third relates to the air temperature. The air temper-
ature as it enters a channel from the gap is taken to be zero in all cases. The values
of the parameters taken as standard will be found in the table defining our symbols.
For those parameters altered in each graphical figure, both the standard value and
the altered value are quoted. Unstated values are standard.

The tabular Figure 11 is a comparison of the fuel element, moderator, and air
temperatures when one parameter at a time is changed to their temperatures under
standard conditions as computed from the more elaborate theory. The standard and
altered values of the parameter changed are indicated in each case. The temperatures
of the fuel elements are compared at three points: at the gap, at the plenum end of the
pile, and at the maximum (which may be shifted under the altered conditions). The
graphite temperatures and the air temperatures are compared at the gap, at the
middle of the reactor, and at the plenum end. A positive sign means the temperature
under altered conditions is higher than under standard conditions.

The results allow a few generalizations:

1. The air temperature can be computed as well from the simple theory as from
the elaborate theory.

2. The metal, graphite, and air are equally hot at the plenum end of a channel.

3. The graphite and air have no maximum temperature, at least of any con-

sequence.

4, For about 30% of a channel length from the plenum end, the graphite tempera-
ture is essentially constant,

5. The maximum metal temperature occurs about half-way along a channel.

6. The heat transfer coefficient to the air from the graphite or metal and the
specific heat of the air are the two parameters of major importance.

7. The flux distribution, the fraction of heat generated in the carbon and the heat
conducted or radiated to the graphite are of secondary importance.

8. The thermal conductivity of graphite and the heat transfer coefficient to the
gap are relatively unimportant, except for the graphite temperature at the gap face,

Finally, Figure 12 is a comparison of theory and experiment as regards fuel
element temperature for two channels. The agreement is poor, even though the
parameters are as representative as possible. Several reasons for the poor agree-

ment may be adduced:

1. We assume the heat transfer coefficient to the air in a channel to be constant.
Actually, the turbulence is greater near the gap, so the heat transfer coefficient is
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larger, and the metal is cooler than our calculations indicate. This explanation is
one of the few which will account for the rapid increase in fuel element temperature
near the gap.

2. Errors occur in the measurement of temperatures. Thermocouples were
mounted on the aluminum fins of the cartridges and were located directly in the air
stream. These thermocouples cause local perturbations in the air flow, hence in the
heat transfer coefficient and in the metal temperature,

3. Errors take place in the measurement of power.

4., We assumed all air going through the reactor goes through the channels; 10%
may leak around. The total air flow was measured. The pile was orificed for 692
channels in a double cosine manner. Of these, 112 of the peripheral channels were
plugged and assumed to transmit no air. Of the remaining 580 channels, 2.5 channels
had no fuel element in them and no orifice, We assumed advisedly that these trans-
mitted twice as much air as an unorificed, unplugged channel loaded with a fuel
cartridge. Not only errors in the air flow per channel occur in the foregoing con-
siderations, but air may leak around the pile at points other than the channels., Evi-
dence for this leakage is provided by the unexpectedly low graphite temperature. Any
leakage would affect the two important parameters of air flow per channel and the heat
transfer coefficient. A 10% decrease in air flow would affect the maximum metal
temperature by roughly 20°C,

In the calculations relating to the comparison with experiment, we assumed the
reflector savings to be 61 cm on each side of the reactor.4 The maximum of the flux
was calculatedb to be 80 cm from the gap center.

In conclusion, we would like to point out a few simplifications:

1. If the numerical coefficients are examined, especially the exponential factors
in equation (26), to a very high degree of approximation we may put the coefficient
of a equal to zero and solve directly for b,

2. Likewise, in equation (27) we may take the coefficient of b equal to zero and
solve directly for a.

3. In view of the unimportance of the heat transfer coefficient h'lo the gap air,
h' may be set equal to 0, unless the finer details of the graphite temperature are de-
sired right at the gap.

4, Because the thermal conductivity k of the graphite is of negligible impor-~
tance, equation (26) becomes finally

6]. Chernick, "“The Critical Experiment,’ #6 of serial reports on start-up experiments.
BNL Log No. C-4736, April 2, 1951, '
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— -1
3
AN C W7, [hPm +C, + 4C2Tm]
b =e 1 + — *
2 3
[h P P_ + (C,+4C,T.) (hPc+hPm)]
c W [hPm +Cy 4 4C2Trﬂ [R cos wlel + S sin w|e| ]+
* 1 R sin a)lel ~ S cos wlel -

2 =3
[h P P_ + (C,+4C,T,) (hPC+hPm)‘:|

+ (1-a) wQ'hP_ sin w]e|

. (33)
5. Likewise, equation {27) becomes
":] =1
-7,L Ca¥7,y D‘Pm €yt 4C, T,
a = e 1 + 7 = *
E P P. + (C+4C,Tp) (hPc+hPm)]
‘ C W [hPm +Cy 4+ 4c2T::| [R cos WL +
*{ =R sin wL -~ § cos WL =~ —
2 3
E P P_ + (C +4C,T) (hPc+hPm)]
- § sin wL] + (1-a) @Q'hP, sin oL
(34)

6. The air temperature T, is found from equation (30). We note the first term
is of consequence only at the plenum end of the channel; the second term is important
only at the gap end of a channel, The sine term is by far the most significant, being
at all times one and a half orders of magnitude more than all others combined,.

7. The carbon temperature, T_, is found from equation (31). The term in a
is important only at the plenum end of a channel; that in .b is important only at the
gap end; the cosine terms are considerably more important than the others, usually
by as much as one order of magnitude. The term T, and the remaining expression
for T. are of comparable size. :

8. The metal temperature, T,,, is found from equation (32). As before, the a
term is important only at the plenum end, the b term at the gap end, and the cosine
term dominates all others usually by at least an prder of magnitude. The term in T,
and the remaining expression for T, are of comparable magnitude.

Acknowledgments

The author is pleased to thank Dr, Irving Kaplan and Mr. Jack Chernick for
several valuable discussions, Mrs., Jean Dominy is to be thanked for some of the
numerical work.



19

HALF OF GRAPHITE
CUBE

, PLENUM END

BNL Log No. D-1837.

. D-1834.

FLUX
\ e'__. L
i poet— '
_.____..1
-o 2\ 3.5¢cm |
) °, FUEL A 4
~ 0?2 0%0 ELEMENT
(o] [o) [o)
[o] 0 o o o o o
09620900 10 GAP
0,0 0”09 o END
0© 0%8° .09 o 4 O
0%00° ¢\ 09,0° || 378 cm
0%, 0" o9 38icm
o 0 o o &l
o o 0 ¢ 0 ©
0%\ ° 0%,0 °
0% lo° 00.0°¢ AIR EXHAUST
0°0l%06°%0°5%° Figure 1 (Left). Air flow pattern in BNL
[e]
8l ot 0 b reactor. BNL IL.og No. D-89.
o \o z 0 2K enum Figure 2 (Above). Various dimensions of
o 0|2 cHAMBER Face half-reactor.
360
-1 Conditions: standard
320-
4 Tm SIMPLE —
280 e T
- - - -
S 240 - Tm COMPLICATED o
L 2404 - .
w T =
& 200+
B T, COMPLICATED — ==
© 160 PR
& Te SIMPLE -
c — --
£ 1204 -z Ty COMPLICATED
oo -
- ”
807 _ - =21, SIMPLE
40+ Lo
—'—”
o T T T T T T T
o 50 100 150 200 250 300 350
POSITION FROM GAP (cm)
Figure 3. Comparison of simple theory and complicated theory. BNL Log No
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| Conditions: h = .0057 cal/sec-cm-0C (.0038 cal/sec-em-©C is standard)
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Figure 4. Effect of heat transfer coefficient to the air in channel. BNL Log No. D-1835.
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360
- Conditions: Ca = 0.20 cal/gm-9C (.24 cal/gm-0C is standard)
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Figure 5. Effect of sp'ecific heat of air. BNL Log No. D-1836.

360

Conditions: axial L = 310 em s = 0 (no reflector saving at
e radial L'= 376 cm full loading)
320 e = -58.4cm
- f=277cm All other conditions standard.
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Figure 6. Effect of actual flux distribution. BNL Log No. D-1838.
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i Conditions: ¢ = 0.10 {0.05 is standard)
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Figure 7. Effect of heat generated in carbon. BNL Log No. D-1839.
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4 Conditions: C) = .019 cal/oC-sec-cm {C) = .0095 cal/9C-sec-em is standard)
3204 or 4C, ;?n = .018 cal/oC-sec-cm (4C, Tfn = ,0086 cal/0C-sec-cm)
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280 oy 2 Lo "-_“""-~-~~
2401 n= <Zs-.
:G 4 - T COMPLICATED ~THIS CASE b s
™ 200+
w 2 N To COMPLICATED-THIS CASE g
> e
E 160_ -
W 204 Ta COMPLICATED-THIS CASE
= -
]
- 80
B . To SIMPLE-STANDARD CASE
-
40 "__"'
L.
o T T T T T T T
0 50 100 150 200 250 300 350

POSITION FROM GAP (cm)

Figure 8. Effect of heat radiated or conducted to carbon. BNL Log No. D-1840.
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-{ Conditions: k = 0.40 cal/sec-9C-cm (0.17 cal/sec-C-cm is standard)
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Figure 9. Effect of heat conductivity of carbon. BNL Log No. D-1841,.

360
— Conditions: h'to gap = 0 {.00093 cal/cm2-sec-9C is standard)
320
4 T SIMPLE- STANDARD CASE —
280 T T T T e ——e L
- - - ~
4 I T=e o
2401 - T, COMPLICATED-THIS CASE S~
- \\
S 200- =
o T, COMPLICATED- THIS CASE ———====
Z 16 0-] -
3 -
& o T SIMPLE-STANDARD CASE—x, S e Ta COMPLICATED-THIS CASE
@ 120 -
W i - -
¢ =
i 801 - Ty SIMPLE~ STANDARD CASE
1 ==
a0 _--
[o] T 7 T T T T T
0 50 100 150 200 250 300 350

POSITION FROM GAP (cm)

Figure 10. Effect of no heat being transferred to gap air. BNL Log No. D-1842.
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Channels
A-2-36 | A-5-7-5]Unit
Conditions:
x 40.6 101.5 cm e =10% P = 16.8 megawatts  k = 0,35 cal/sec-
y 61.0 1422 |cm N = 580 channels, L, = 274.5 cm em-oC
360+ w {1640 1460 lbs/hr but 2.5 not loaded Lj'= 218.5 cm L) = 2675 em
- h 0053 .0049cal/em?-| L =292 cm Ly = 267.5 cm
320 sec-°C le| = 76 cm
— f =259 cm
1 lac, 13 L0051 .0033|cal/em- Al other conditions standard.
280 m sec-°C
. EXPERIMENT ~ CHANNEL A-2-3-S
8240‘ ,/”.-’— s'\~\~
8 2004 e . oo [ THEORY- CHANNEL A-2-3-S
%‘ IGO: ,/’ §~“—o
E T ’ 5
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s 1/ =z
ri] Pl THEORY~ CHANNEL A-5-7-S
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POSITION FROM GAP (cm)

Figure 12. Comparison of experimental metal temperatures with complicated theory.
BNL Log No., D-1844,
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